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SUMMARY

An electrochemical approach for ammonia production is successfully developed
by coupling the anodic dinitrogen oxidation reaction (NOR) and cathodic
hydrogen evolution reaction (HER) within a well-designed membraneless flow
electrolyzer. The obtained reactor shows the preferential yield of ammonia
over nitrogen oxides on the vanadium nitride catalyst surface. At an applied
oxidation potential of 2.25 V versus the reversible hydrogen electrode
(vs RHE), a promoted ammonia production rate and Faradaic efficiency (FE)
were obtained with 9.9 mmol g�1 h�1 (0.029 mmol cm�2 h�1) and 4.8%, respec-
tively. Besides, the negative affection of ammonia contamination is efficiently
alleviated. Density functional theory calculations revealed that the thermody-
namic energy needed to produce ammonia (�0.63 eV) is far lower than that of
producing nitrogen oxide (0.96 eV) from hydrogenated nitrogen oxides
[*N2OH] splitting, confirming the coupling of NOR and HER.

INTRODUCTION

The cyclic transformation of nitrogen is one of the vital material cycles in the biosphere.1–3 The fixing dini-

trogen from the atmosphere occupies a pivotal role and has been industrially realized to synthesize

ammonia by the Haber�Bosch (H�B) process since the early 1900s.4,5 This technological innovation has

unburdenedmankind from solely relying on biological-based nitrogen fixation and revolutionized the agri-

cultural production system.1,3 However, the energy sources and the hydrogen used in the H–B process still

primarily originated from fossil fuel combustion and methane reforming. All of which released tremendous

amounts of greenhouse gases and excessive energy consumption.6,7 Therefore, the development of

advanced energy-conservation nitrogen fixation methods with less greenhouse gas emissions is urgently

needed.

Coupling renewable energy and a water-based hydrogen source,8–11 the electrochemical fixation of dini-

trogen (EFN) under ambient conditions was on the rise in recent years.1,7,12 To date, most of the EFN

research focused on the dinitrogen reduction reaction (NRR) to form ammonia (Figure 1), including novel

electrocatalysts, reaction optimization, and exploring electrocatalytic mechanisms.13–20 Unfortunately,

considering the inert molecular structure of N2 (bond energy: 940.95 kJ mol�1) and ubiquitous ammonia

in aqueous solutions, organic solvents, catalysts, membranes, etc., satisfactory results on NRR from H2O

and N2 under ambient conditions are significantly limited.21–25 To date, the EFN process is still far from

ideal. The intractable challenges remain in low efficiency, poor conversion, severe contamination, unsound

mechanism, etc.22,25 Therefore, the need of superior and efficient protocols to enhance ENF performance

is critical to overcome ammonia contamination. On top of that, the probing mechanism is also necessary to

investigate.

Heuristically, the fixation of nitrogen could be realized by forming nitrogen oxides (NOx) from the oxidation

of N2 activated by lightning,1,26 plasma,27 as well as other mimetic process in electrocatalytic nitrogen

oxidation reaction (NOR, Figure 1).28,29 Meanwhile, significant progress has been achieved in converting

NOx into ammonia by electrocatalytic hydrogenation with high-efficiency catalysts (Figure 1).30–33 In addi-

tion, the microflow cell configuration could substantially improve the electrocatalytic performance

of various reduction reactions in both aqueous34–38 and organic electrolytes.8 Given that the Nafion

membrane used in NRR systems has been experimentally confirmed with unfavorable outcome such as
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Figure 1. Schematic of electrocatalytic nitrogen fixation and potential challenges
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imprecise ammonia quantification and long-term instability in practical scenarios23,39 by accumulating and

releasing ammonium ions (NH4
+) during ion exchange with acid groups,22,39,40 therefore, it is logical to

establish a membraneless microflow cell system with an integrated protocol of NOR and NOx reduction

reaction to achieve the aforementioned synergistic EFN process.

In thiswork, weproposed a novel pathway for ambient ammonia synthesis that successfully couples the elec-

trochemical NOR with the hydrogen evolution reaction (HER) process (ENH) in a single microflow cell unit

(Figure 2). Commercial vanadium nitride nanoparticles (VN NPs) were applied as the electrocatalyst to in-

situoxidizeN2 into *NOx species at the anode side, while theH2 fromcathodicwater splittingwas then trans-

ferred to the anode and subsequently reduced the *NOx species into ammonia. The coupled anodic and

cathodic reactions in one single flow electrolyzer effectively alleviated circumambient ammonia contamina-

tion and promoted ammonia production (ammonia yield rate: 9.9 mmol g�1 h�1 (0.029 mmol cm�2 h�1) and

FE: 4.8%). Furthermore, density functional theory (DFT) calculations indicate that the thermodynamic energy

barrier to produce ammonia is much smaller than that of nitrogen oxide, confirming a preferential coupling

process for ammonia synthesis, by providing a novel way for the hydrogenation process in the formation of

ammonia during the electrochemical fixation of nitrogen. We believe the proposed strategy could create

new insights into promoting ammonia synthesis under ambient conditions.

RESULTS

Owing to the preferential N2 adsorption energy,9,41,42 the active interface properties, and the strong

oxidizing tendency,43 the commercial VN NPs were loaded on a gas diffusion layer (GDL) and conducted
Figure 2. Schematic representation of the electrochemical flow cell used in this work
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Figure 3. Microstructural characterizations of VN NPs

(A) SEM image, (B) SEM image, (C) HRTEM image, and (D) PXRD spectrum.

ll
OPEN ACCESS

iScience
Article
as the anodic catalyst in this work (see STAR Methods for details). Scanning electron microscopy (SEM) im-

ages (Figures 3A and 3B) showed the well-dispersed nature of the ca. 200-nm-diameter nanoparticles on

the GDL and good porosity of the catalyst layer, both of which are favorable for stabilizing the

electrode�electrolyte interface in the flow cell system.44 The corresponding high-resolution transmission

electron microscopy (HRTEM) image illustrates well-resolved lattice fringes with an interplanar distance of

0.204 nm, this can be indexed to the (200) plane of fcc phased VN crystal (Figure 3C). In addition, the pow-

der X-ray diffraction (PXRD) pattern (Figure 3D) of the VN nanoparticles further confirmed the face-

centered cubic crystal structure of the as-purchased VN NPs (JCPDS No. 25-1252).9 Surface composition

analysis of the as-obtained electrode was accomplished by X-ray photoelectron spectroscopy (XPS, Fig-

ure S1A) and energy-dispersive X-ray spectroscopy (EDS, Figure S1B), indicating the presence of V, N,

C, and O. These characterizations jointly confirmed that the commercial VN NPs can be an ideal candidate

for catalyzing ENH process in the flow cell.

The ENH performance of the as-prepared electrodes was systematically assessed in a membraneless flow

cell electrolyzer with two compartments (Figures 2 and 4A), in which the anodic reaction (NOR) and

cathodic reaction (HER) were coupled to facilitate the production of ammonia (see STAR Methods for de-

tails). The amount of produced ammonia was quantified via a combination of the Nessler method and 1H

NMR spectroscopy (see STAR Methods for details) and the corresponding calibration curves for the NH4
+

assay are presented in Figure S2. We first optimized the ENH performance of the electrolyzer by screening

different catalyst loadings (Table S1), types of electrolytes (Table S2), flow rates of electrolytes (Table S3),

and current densities (Figures 4B and 4C, Table S4). With a catalyst loading of 3 mg cm�2, electrolyte of

0.05 M H2SO4, and current density of 50 mA cm�2, the optimal ammonia yield rate and FE on the as-

described membraneless flow cell electrolyzer were obtained with 9.90 mmol g�1 h�1

(0.029 mmol cm�2 h�1) and 4.8%, respectively, at a potential of 2.25 V vs RHE. At a higher current density

(100 mA cm�2), the cell yielded a highly unstable current profile and lower ENH activity likely resulted from

the gas accumulation and severe corrosion of the carbon substrate at the anode (Figures 4B and 4C).34,45 It

is worth mentioning that the optimized flow rate of electrolyte was finally chosen as 1 mL min�1, which can

be attributed to the severely poor stability and insufficient yield rate of ammonia at higher flow rates (2 and
iScience 26, 106407, April 21, 2023 3
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Figure 4. The electrochemical performance of the VN NPs electrode

(A) Schematic of nitrogen fixation by the membraneless flow electrolyzer.

(B) Chronopotentiometric curves for ENH at various current densities in 0.05 M H2SO4 electrolyte.

(C) FEs and yield rates of ammonia under different current densities. The error bars represent the s.d. for at least three

independent measurements.

(D) 1H NMR spectra for the collected samples.

(E) 1H NMR spectra for the obtained electrolytes from different operating parameters.
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5 mL min�1, Table S3). The production of ammonia from ENH was further analyzed according to the 1H

NMR results at different current densities (Figures 4D and 5A). In addition, the 15N2 and
14N2 isotope label-

ing results (Figure 4E) within 5 min for the first or second cycle clarify that the nitrogen source is from N2

activation (see STARMethods for details), excludingN leaching from VNor N concentration from surround-

ing contamination.

A comparison of the ENH performance in this work and reported literature is shown in Table 1. In terms of

the current density, ammonia yield rate, FE, and energy efficiency, the electrocatalytic performance in this

work is superior to the reported literature.8,9,13,16–18,28,29,46,47 By replacing feed gas, the steady-state linear

sweep voltammogram (LSV) curves for the VN NPs (Figure 5B) showed a decline in current density with the

sequence of N2, air, and Ar-saturated electrolyte. The enhanced current in N2 and air-saturated electrolytes
4 iScience 26, 106407, April 21, 2023
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Figure 5. Quantification and verification of produced ammonia from ENH

(A) Comparison of Nessler method and NMR method for quantifying the NH4
+ obtained from different current densities.

The error bars represent the s.d. for at least three independent measurements.

(B) LSV curves of VN NPs in N2-saturated, air-saturated, and Ar-saturated 0.05 M H2SO4 electrolyte.
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should result from the ENH process.48 The trace yield of ammonia from the Ar-saturated electrolyte is likely

contributed from the NOx
� residues in the electrolyte or catalyst.24 The corresponding higher ENH perfor-

mance in N2 and air-saturated electrolytes confirms that the catalytic conversion of N2 to ammonia occurs in

this system (Table S5). Furthermore, significant amounts of ammonia were also produced on bulk VN (Fig-

ure S3 and S4), suggesting that the formation of ammonia is universal in VN-catalyzed ENH.

As shown in Figures 6A and 7 inset, the obtained VN NPs have a negligible decay in ammonia yield and FE

during five rounds of recycling test at 50 mA cm�2, indicating their decent stability for ENH. The applied

potential positively shifted with additional cycles (Figure 7), which could also mainly originate from the car-

bon corrosion of the GDL substrate.45 After the stability test, photographs of the VN NPs-deposited GDL

show that the VN NPs remained in good condition on the front side, while severe etching occurred on the

back side (Figure S5). In addition, the GC spectrum reveals the formation of monoxide (Figure S6) during

the ENH process, further verifying the existence of the side reaction of carbon oxidation.

Furthermore, when the applied current density was decreased to 10 mA cm�2, the ENH process achieved

stable potential curves (Figure S7A) and kept constant for twelve cycles (Figure S7B), indicating that carbon

erosion could cause negative effects on the ENH process. This further suggested the necessity to explore

suitable carbon-free gas diffusion layers in future studies. More importantly, the basic physical structures of
Table 1. Comparison of the catalytic performances (j-Current density, Faradaic efficiency-FE, Ammonia yield rate, and Energy efficiency-EE) of VN

NPs toward ENH with recently reported NRR and NOR catalysts at ambient conditions

Electrocatalyst j (mA cm-2) FE (%)

Ammonia yield

rate (mmol g-1 h-1)

Ammonia yield rate

(mmol cm-2 h-1)

EE (kJ mol–1

NH3) Reference

VN NPs 50 4.78 9.9 3.0*10-2 15542 This work

VN nanoparticles 0.096 6 2.4 1.2*10-3 – Yang et al.9

BiNCs/CB/CP 4.2 66 200 5.2*10-2 264 Hao et al.13

Cu/PI-300 1.7 6.56 0.2 1.01*10-3 – Lin et al.46

Au-TiO2/CP 1.6*10-3 8.1 1.3 1.9*10-5 715 Shi et al.47

Fe/FTO 1.4*10-3 60 0.12 1.7*10-5 386 Zhou et al.16

Au film 1.1*10-3 0.12 – 1.4*10-5 120606 Yao et al.18

PEBCD/CC 2.8*10-3 2.85 0.027 3.4*10-5 5078 Chen et al.17

Stainless steel cloth, GDE 8.8 35.3 – 1.1*10-1 – Lazouski et al.8

ZnFexCo2-xO4 spinel oxides 0.01 10.1 0.13 (NO3
-) 3.3*10-5 – Dai et al.28

Ru/TiO2 3.0 26.1 0.16 (NO3
-) 1.6*10-5 – Kuang et al.29

iScience 26, 106407, April 21, 2023 5
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Figure 6. Electrochemical stability investigation

(A) Five cycle ENH performance of VN NPs at 50 mA cm�2.

(B) High-resolution N1s XPS spectra of VN NPs before the ENH stability test.

(C) High-resolution N1s XPS spectra of VN NPs after the ENH stability test.
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the VNNPs observed on SEM (Figure S8A), HRTEM (Figure S8B), PXRD (Figure S9A), XPS (Figures S9B, S9C,

and S10A), and EDS (Figure S10B) were all well maintained after the stability test at 50 mA cm�2, further

confirming the excellent durability of the ENH system. For instance, the nitrogen atomic content is almost

unchanged as comparing the VN NPs before (11.04 at%) and after (10.94 at%) stability test at 50 mA cm�2

(Figures S1A and S10A). As illustrated from the N1s XPS spectra of VN NPs before and after the ENH sta-

bility test (Figures 6B and 6C), the obvious higher N-containing species on VN NPs before the stability test

should be originated from quaternary-N of ammonia, which could be due to the adherence of atmospheric
Figure 7. Electrochemical stability investigation

Five cycle chronopotentiometric curves of ENH process by using VN NPs as the catalyst in 0.05 M H2SO4 (inset: the

corresponding H2SO4 electrolyte solution reacted with the Nessler agent).

6 iScience 26, 106407, April 21, 2023



Figure 8. Control experiments for mechanism investigation

(A) UV spectra. The inset in a, shows KI test paper treated with the corresponding samples.

(B) Photographs of different samples after Azide reaction.

(C) Comparison of ammonia yield rates obtained with the membraneless, membrane, and H2 feed membrane flow

electrolyzer at 50 mA cm�2. The error bars represent the s.d. for at least three independent measurements.
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ammonia contaminant on the commercial VN NPs as stored in the ambient condition.49 The other nitrogen

species show almost no change, such as VN and VNxOy.
9,50 These results support the conclusion that the

produced ammonia is derived from ENH.

Systematic control experiments were conducted to investigate the reaction mechanism of the coupled

NOR and HER process. As shown in Figures 8A and 8B, in the instantly collected solution, the trace

amount of NO2 was converted into NO2
� by reacting with KOH, triggering a chromogenic azide reaction

(Table 2), and turning the solution into a magenta color with an UV-visible absorption peak ca. 550 nm.51

Meanwhile, with the I2 formed from the reaction of NO2 and potassium iodide (KI), KI test paper dis-

played a blue color when dipped in the outlet solution from the ENH reaction (Figure 8A inset, Table 2).52

The chromogenic reaction of NO2 evidenced the occurrence of the NOR at the anode, suggesting the

smooth proceeding electrooxidation process to the in-situ-form *NOx intermediates. Moreover, to

determine the quantity of NO2
� contamination in N2 source, the experiment of simple N2 purging under

open circuit potential (OCP) for about 10 min was performed. As shown in the Figures S11A and S11B,

the collected electrolyte has no color reaction with KI tester and cannot trigger a chromogenic azide re-

action, indicating the trace existence of NO2
�. Meanwhile, the same control tests were conducted by

feeding Ar under OCP and a current density of 50 mA cm�2 (Figures S12A and S12B). The results

show the same phenomenon as in the N2 case except that the much lower content of NO2
� could be

detected, which is in good agreement with the results as measured by the Nessler method (Table S5).

Those results exclude the NO2
� contamination from N2 source. Besides, considering that ammonia
Table 2. Chromogenic reaction equations in detecting NO2

Disproportionation and Azide reaction:

2NO2 +2KOH / KNO3 +KNO2 + H2O

HCl+NO2
- + H2N-Ph-SO3H / ClN2-Ph-SO3

- +2H2O

ClN2-Ph-SO3
-+ H2N-Np / H2N-Np-N=N-Ph-SO3

-(magenta) +HCl

KI test paper reaction:

NO2 +KI / 2KNO3 + 2NO + I2 (blue)

iScience 26, 106407, April 21, 2023 7



Figure 9. DFT calculations optimized geometric structures and intermediates on the VN NPs (Red: V, Gray: N,

Blue: O, Green: H)
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was generally derived from the electron-accepting process of nitrogen, the reduction reaction of *NOx

must have happened.

With the membraneless configuration of the flow electrolyzer, the hydrogen produced from the HER at

the cathode could transfer across the thinner electrolyte to the anode surface and reduce the in-situ-

formed *NOx to produce ammonia conveniently. Figure 8C shows that the ammonia yield rate in the

membraneless flow cell was approximately two times higher than that in the membrane flow cell. In

addition, in the membraneless flow cell, hydrogen was detected on the anode side by GC measurement

(Figure S6). The lower ammonia yield rate in the membrane flow cell could be ascribed to the blocked

hydrogen permeation by the Nafion 211 membrane53 and the trace ammonia contamination.39
8 iScience 26, 106407, April 21, 2023



Figure 10. DFT calculations free energy evolution for ammonia and nitrogen dioxide formation on VN (111) at 0 V

(vs RHE)
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Furthermore, to verify the H2-permeation reaction process in the membraneless cell, extra hydrogen was

fed from the cathode side of the membrane flow cell, and the ammonia yield rate obviously increased

(Figure 8C). Conversely, when replacing the cathode with IrO2 NPs-loaded GDL or bare GDL

(Table S6), which are generally recognized to have low activity toward HER, ammonia formation would

be suppressed. These results evidently proved the ammonia formation process should be the coupling

of the NOR and HER.

The yellow V2O5 NPs (Figure S13A Inset), which were directly converted from the commercial VN NPs by

pyrolysis treatment in air, showed almost no ENH activity (Figure S13 and Table S7). In conjunction with

the isotopic labeling results (Figure 4E), a similar mechanism to the Mars-van Krevelen mechanism in

NRR can be proceeded in ENH,9,10,54 in which N2 exchanges with N from VN to form ammonia. DFT calcu-

lations were carried out to further verify the coupling mechanism of NOR and HER (see STAR Methods for

details) and the higher selectivity of ammonia than nitrogen oxide on VN (111). As depicted in Figures 9

and 10, the VN catalyst was firstly activated through energetically favorable hydrogenation and oxidation

processes to form oxygen-doped VN with nitrogen vacancy (VNO-vac) sites. Meanwhile, some nitrogen on

the catalyst surface was lost as a nitrogen source to form ammonia, and vacancies for adsorbing N2 were

left. This mechanism explained the nitrogen exchange between the catalyst and N2, in good accordance
Figure 11. DFT calculations proposed mechanism for ammonia and nitrogen dioxide formation on VNO-vac sites

iScience 26, 106407, April 21, 2023 9
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with the isotopic results for both 15NH4
+ and 14NH4

+ (Figure 4E) and the previously reported electrochem-

ical NRR on VN NPs.9

Theoretically, VNO-vac sites would subsequently adsorb N2 molecules (N2*) and then preferentially

convert them into hydrogenated nitrogen oxides (N2OH*) at oxidation potentials (Figure 11). Under

an atmosphere with H2, the N2OH* intermediate preferentially forms N2HOH* through a chemical hydro-

genation pathway (DGt = �0.63 eV) in competition with N2O* from dehydration proton-coupled electron

transfer (DGt = 0.96 eV). The following steps in the ammonia formation process are all more energetically

favorable than those of nitrogen oxides (NO2, Figure 10). The ultra-low concentration of NO2 could be

removed by the flowing electrolyte or in-situ converted to ammonia by H2. Therefore, ammonia is the

major product even at the oxidation potential following the pathway of N2—N2OH— N2OH2—N2H—

N2H2—NH3, in well accordance with the experimental observations (Figures 4 and 8). In addition, due

to the lower kinetics of the HER in alkaline media than in acidic media,55 ammonia formation was

impeded in the first 400 s at a current density of 50 mA cm�2 (Figure S13). Once sufficient H2 was

produced in the system (Figure S14 and S15), the ammonia yield returned to normal and

was almost the same as that in acidic media (Figures 6A and S14C). These results strongly demonstrated

the efficient production of ammonia through the coupling of NOR and water splitting in one single flow

electrolyzer.

DISCUSSION

In summary, a nitrogen fixation strategy for electrochemical ammonia synthesis from nitrogen and water

was proposed. This method has the benefit of high yield under ambient conditions through the coherent

cooperation of anodic nitrogen oxidation and cathodic hydrogen evolution. Systematic investigations

and experimental results demonstrate that the coupled anodic NOR and cathodic HER accelerated

the ammonia synthesis from N2 in a membraneless flow electrolyzer. The process promoted ammonia

production (ammonia yield rate: 9.9 mmol g�1 h�1 (0.029 mmol cm�2 h�1), Faradaic efficiency: 4.8%),

and alleviated circumambient ammonia contamination. Moreover, simulation model further revealed

the reaction mechanism and indicated that the coupled NOR and HER process could improve energy

efficiency and facilitate the overall ammonia synthesis process. We believe this electrochemical integra-

tion strategy positively promotes the ammonia production yield and detection accuracy toward ammonia

synthesis from nitrogen and water. Future studies may find or design suitable gas diffusion layers and the

rational cell creation for promoting the development of nitrogen fixation through the electrochemical

pathway.

Limitations of the study

The very limited N2 solubility in aqueous media severely drags down the efficiency for electrochemical fix-

ation of nitrogen. Meanwhile, most of the NRR/NOR performance associating electrochemical current den-

sity is far from enough to industrially obtain profits. To overcome those bottleneck problems, it is highly

urgent to design advanced cell configuration with well-defined gas-liquid-solid triple-phase interface in

the absence of mass transport limitations. Hence, vast efforts should also be devoted to the novel cell

design for promoting the development of nitrogen fixation through electrochemical pathway in the pro-

spective study.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

VN NPs 3A Chemicals Co., Ltd CAS: 24646-85-3

Bulk VN 3A Chemicals Co., Ltd CAS: 24646-85-3

Pt/C (20 wt% Pt) Johnson Matthey CAS: 7740-06-4

NH4Cl Aladdin CAS: 12125-02-9

H2SO4 Fisher CAS: 7664-93-9

KOH Aladdin CAS: 1310-58-3

Dimethyl sulfoxide Alfa Aesar CAS: 67-68-5

D2O Energy Chemical CAS:7789-20-0

HANNA agent HANNA Inc. Product number: HI93715-05

p-aminobenzene-sulfonamide Adamas-beta CAS: 63-74-1

N-(1-Naphthyl) ethylenediamine

dihydrochloride

Aladdin CAS: 1465-25-4

KI test paper Shanghai SSS Reagent Co., Ltd Product number: C148-2017

N2 (99.999%) Nanjing Tianze Gas Co., Ltd CAS: 7727-37-9

N2 (
15N, 98%) Sigma-Aldrich CAS: 29817-79-6

Ar (99.999%) Nanjing Tianze Gas Co., Ltd CAS: 7740-37-1

Nafion (10 wt% aqueous solution) Fuel Cell Store CAS: 66796-30-3

Gas diffusion layer Fuel Cell Store Product number: Sigracet 29 BC

Nafion 211 membrane Fuel Cell Store Product number: 1600001-2

Software and algorithms

Graph plotting Origin Lab Origin: Data Analysis and Graphing Software (originlab.com)

VASP 5.3.5 VASP Software VASP - Vienna Ab initio Simulation Package

Other

SEM LEO153VP, ZEISS Inc. https://www.zeiss.com.cn/microscopy/products/electron-microscopy/evo.html

TEM JEM-2800, JEOL Inc. http://www.bahens.cn/product/55.html

XRD D8 ADVANCE, Bruker Inc. https://www.instrument.com.cn/netshow/C123139.htm

XPS PHI 5000, HITACHI Inc. https://www.instrument.com.cn/netshow/C191769.htm

Ammonia detector HI96715, HANNA Inc. https://b2b.baidu.com/land?id=bb23248c6763b817cd5391f1e80eafdd10

UV spectrophotometer UH5300, ULVAC-PHI, Inc. http://www.app17.com/c143174/products/d9951153.html
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Wenlei Zhu (wenleizhu@nju.edu.cn).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d Original data reported in this paper will be shared by the lead contact upon request.

d This paper does not report original code.
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d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

Material characterization

All chemicals were of analytical grade without further purification unless otherwise noted. Commercial va-

nadium nitride nanoparticles with 40 nm diameter (VN NPs) and bulk vanadium nitride nanoparticles with

500 nm diameter (bulk VN) were used as catalysts in this work and bought from 3A Chemicals Co., Ltd.

(Shanghai, China). Themicrostructure of the catalysts was characterized by field emission scanning electron

microscopy (SEM, LEO153VP, 10 kV) with an energy-dispersive X�ray (EDS) spectrometer and high-reso-

lution transmission electron microscopy (HRTEM, JEOL, JEM-2800). Powder X-ray diffraction (PXRD) mea-

surements were conducted on a D8 ADVANCE X-ray diffractometer (Bruker Corporation, America). X-ray

photoelectron spectra (XPS) were measured on a PHI 5000 VersaProbe (Ulvac-Phi, Japan), and XPS fitting

was conducted by CasaXPS software with the adventitious carbon peak calibrated to 284.8 eV. All peaks

were fitted using a Gaussian/Lorentzian product line shape and a Shirley background. Ultraviolet-visible

(UV) spectra were recorded on a UH5300 spectrophotometer (Shimadzu, Kyoto, Japan).
Flow cell electrolysis

Electrochemical measurements were performed on an Autolab potentiostat (PGSTAT 204) in a three-elec-

trode system. In this study, the carbon paper with a microporous layer (Sigracet 29 BC, Fuel Cell Store,

America) was used as the gas diffusion layer (GDL) for supporting catalysts, collecting current and acting

as a pathway for gas from flow channels to the catalyst surface. A Pt/C (platinum, nominally 20% on carbon

black, Alfa Aesar)-coated GDL with a loading of 0.5 mg cm�2 was used as the counter electrode unless

otherwise noted. A saturated calomel electrode (SCE, saturated KCl, INESA Scientific Instrument CO.,

LTD) or Ag/AgCl (saturated KCl, CH Instruments, Inc.) electrode was used as the reference electrode

(RE). A VN NPs-coated GDL was applied as the working electrode unless otherwise noted and was pre-

pared by drop-casting a catalyst ink. We weighed the GDL before and after deposition to record its actual

catalyst loading and maintained a loading of 3 mg cm�2 for all electrodes unless otherwise noted. To pre-

pare the catalyst ink, 100 mg of catalyst was ultrasonically dispersed in a mixture of 3 mL of n-propanol and

20 mL of Nafion (10 wt% aqueous solution, Fuel Cell Store, America). Then, the mixture was sonicated for

30 min prior to dropcasting. Nafion 211 membrane (Fuel Cell Store) was used in the membrane flow cell.

The electrolysis experiments were performed in a two-channel flow cell (channels dimension 2 3 0.5 3

0.2 cm3, Figure 2). The device was fabricated from acrylic and included a gas channel for feeding high-purity

N2 (99.999%), a liquid channel for flowing electrolytes, and solid acrylic end pieces. PTFE gaskets were

placed between each component for sealing, and the device was tightened using six bolts. The electrode

geometric area was 1 cm2, and the distance between the anode and cathode was 2 mm. An external SCE

(electrolyte of acidic media) or Ag/AgCl (electrolyte of alkaline media) reference electrode located �5 cm

from the inlet of the cathode was used to measure the anodic half-cell potential. All potential measure-

ments were converted to the RHE based on the following formula: ERHE = EHg/HgCl2 + Eq
Hg/HgCl2 +

0.059 3 pH (in volts) or ERHE = EAg/AgCl + Eq
Ag/AgCl + 0.059 3 pH (in volts). The measured pH values of

the bulk electrolyte were used for RHE conversions unless stated otherwise.

The N2 (99.999%), Ar (99.999%), or air (pumped from the atmosphere) flow rate was set at 10 mL min�1 via a

mass flow controller (Sevenstar, CS300). The flow rates of electrolyte, sulfuric acid (H2SO4 with different

concentrations, 98%) or potassium hydroxide (1 M KOH, 99.99%) aqueous solution were controlled via a

peristaltic pump (Chuangrui Precision Pump Co., Ltd., China), with the electrolyte flow rate set to 1 mL

min�1 unless otherwise noted. Prior to electrochemical reactivity studies, all the electrodes assembled

into the flow electrolyzer were first rinsed with the electrolyte at 1 mL min�1 for 15 min to clear surface

impurities.

In the stability investigation experiments, a constant current density of 50 mA cm-2 was applied for 500 sec-

onds in the membraneless flow cell with a VN NPs-coated GDL as the anode and Pt/C-coated GDL as the

cathode. N2 was fed into the cell at a flow rate of 10 mL min�1. The same configuration was run for five cy-

cles, and the cell was rinsed with fresh 0.05MH2SO4 for 5 min with a flow rate of 1 mLmin�1 after each cycle.

To acquire the energy efficiency, the ENH test was performed at 50 mA cm�2 for ca. 20 minutes in a
iScience 26, 106407, April 21, 2023 15
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membraneless flow cell with two electrodes, i.e., an anode (VN NPs on a GDL with a loading of 3 mg cm�2)

and cathode (Pt-C on a GDL with a loading of 0.5 mg cm�2), in which the electrolyte was 0.05 M H2SO4 by

feeding N2 at a flow rate of 10 mL min�1.

Product quantification

The amount of ammonia produced in one single-pass electrolysis was determined using the Nessler

method without a condensing process. The calibration curves were made by using NH4Cl solutions in

0.05 M H2SO4 (adjusting pH to 13.5 with 1 M KOH solution) or 1 M KOH solution with known concentrations

using a photometer (HI 96715, HANNA). After ammonia in an acidic electrolyte was collected in an aseptic

centrifuge tube, KOH solution (1 M) was added to adjust the pH of the solution to 13.5 before its

qualification.

The quantification of the ammonia amount in single-pass electrolysis was also verified by using 1H NMR

(Bruker AVIII 500 MHz). The 1H NMR spectra were obtained using a water suppression method with 1500

scans. Typically, 500 mL of collected single-pass electrolyte was mixed with 100 mL of internal standard so-

lution [25 ppm (m/m) dimethyl sulfoxide (R99.9%, Alfa Aesar) in D2O (99.8%)]. Gas products from the anode

were determined on a gas chromatograph (GC, Agilent 7890B) equipped with Hayesep D and Molsieve 5A

columns leading to a thermal conductivity detector (TCD) and a Hayesep D column leading to a flame ioni-

zation detector (FID). Hydrogen and oxygen were measured using TCD, while monoxide was detected us-

ing FID.

The Faradaic efficiency (FE) of ammonia formation was calculated as follows:

FEð%Þ = ð3F 3 C 3 VÞ=Q Equation 1

where F is the Faraday constant, C is the measured ammonia concentration, V is the volume of the electro-

lyte, and Q is the total charge passed through the electrode during electrolysis.

The yield rates of ammonia production were calculated by the following equations:

rðm;NH4+ Þ = ðC 3 VÞ=t3m Equation 2
rðA;NH4+ Þ = ðC 3 VÞ=t3A Equation 3

where C is the measured ammonia molar concentration, V is the volume of the electrolyte, t is the electro-

chemical oxidation reaction time, m is the loading mass of the electrocatalyst, and A is the geometric area

of the working electrode.

The energy efficiency was calculated by the following equation:

e = Ǝ=nNH3 Equation 4

where Ǝ is the applied electric energy and n is the measured ammonia molar amount.

15N2 electrolysis

The labeled isotope experiment was performed using 15N2 gas (98 at%
15N2, Sigma-Aldrich) for electrolysis.

Typically, 15N2 was injected into the flow cell with a flow rate of 10 mL min�1, and the flow rate of

0.05 M H2SO4 electrolyte was set at 1 mL min�1. Electrolysis tests were conducted at a constant oxidation

current of 50 mA cm�2 for two cycles with each cycle lasting 5 min, and the relevant single-pass electrolyte

was collected for analysis by 1H NMR.

Computational methods

All the calculations were performed with density functional theory (DFT) as implemented in the Vienna Ab

initio Software Package (VASP 5.3.5) code, the Perdew–Burke–Ernzerhof (PBE) generalized gradient

approximation and the projected augmented wave (PAW) method.56,57 The cut-off energy for the plane-

wave basis set was set to be 400 eV. The convergence criteria for the electronic self-consistent iteration

and force were set to 10�5 eV and 0.01 eV/Å, respectively. A 43 4 supercell of the VN (111) surface including

6 atomic layers was constructed to model the catalyst in this work, with the bottom of two layers fixed in

structural relaxation. The Brillouin zone of the surface unit cell was sampled by Monkhorst–Pack (MP)

grids.58 The VN (111) surface was determined by a 3 3 3 3 1 Monkhorst�Pack grid.59 A vacuum layer of
16 iScience 26, 106407, April 21, 2023
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15 Å was introduced to avoid interactions between periodic images. The adsorption energy (Eads) of the

surface species is defined by

Eads = Etotal � Esurface � Especies Equation 5

where Etotal represents the total energy of the adsorbed species on the catalyst surface, Esurface is the en-

ergy of the empty surface, and Especies is the energy of the species in the gas phase.
iScience 26, 106407, April 21, 2023 17
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