INTRODUCTION TO CARBON CAPTURE AND STORAGE (CCS)

Poh Boon Ung General Manager March 26, 2025 / CETESB CCS Workshop

OUR MISSION TO ACCELERATE DEPLOYMENT OF CCS

WHAT IS CCS?

Carbon Capture and Storage (CCS)

A suite of technologies that captures the greenhouse gas carbon dioxide (CO_2) and stores it safely and permanently underground, so that it does not reach the atmosphere and contribute to climate change.

WHY DO WE NEED CCS?

There is no 'one-size-fits-all' solution to climate change. A combination of solutions is needed - with CCS essential to the mix.

Limit global warming to below 1.5°C and avoid the worst impacts of global warming

Cut greenhouse gas emissions to net zero by 2050

ROLE OF CCS

CCS FOR REACHING NET ZERO EMISSIONS

Achieving deep decarbonization in hard-to-abate industry.

Enabling the production of low-carbon fuels at scale.

Providing emissions reductions in the power sector.

Delivering negative emissions.

CARBON DIOXIDE REMOVAL (CDR)

- Carbon dioxide removal (CDR) is the process of removing CO_2 from the atmosphere e.g., afforestation, reforestation, direct air capture (DAC) with CCS, and bioenergy with CCS, or BECCS
- BECCS applications include ethanol plants, biogas purification plants and biofuel power plants. ۲
- **Negative Emissions** if CO_2 stored > CO_2 emitted during biomass production, capture, transport, storage and use ۲
- Brazil has one of the greatest potentials for BECCS in the world, given its prominence in ethanol fuel production ۲

GLOBAL CCS FACILITIES

CO₂ CAPTURE CAPACITY OVER TIME

Capacity of Commercial Facilities Pipeline

Capture Capacity (Mtpa)

CCS IS PROVEN

First commercial CO₂ facility

1930s

First commercial CO₂ separation facility using amines commences operation in the natural gas industry

First commercial geological storage

1996

1972

First enhanced oil recovery project

First enhanced oil recovery project - in which CO₂ is geologically stored in the process – commences operation at the Terrell Gas **Processing Facility**

First commercial geological storage of CO_2 for climate mitigation purposes commences at Sleipner, Norway

2024

> 600 projects in the pipeline

• 50 in operation • 44 in construction

CCS PROJECTS TODAY

Ethanol & Hydrogen

- Decatur (Ethanol)
- **Red Trail (Ethanol)**
- Quest (Hydrogen)

Carbon Intensive Industry

- Al Reyadeh (Steel)
- **Qingzhou Oxy-Fuel (Cement)**
- **Brevik (Cement, under** construction)

- **Boundary Dam (Coal)**
- Petra Nova (Coal)
- Net-Zero Teesside (Gas, under construction)

Direct Air Capture

- Orca
- Mammoth
- STRATOS (under
- construction)

HOW CCS WORKS

Three key steps

CAPTURE

TRANSPORT

STORAGE

CAPTURE

 CO_2 can also be removed directly from the air.

Involves separating CO₂ from emissions produced by industrial processes such as cement or steel production,

CATEGORIES OF CAPTURE SYSTEMS

POST-COMBUSTION CO₂ CAPTURE

- Post-combustion capture refers to the removal of CO₂ from flue gases emitted after fuel combustion in industrial facilities.
- This method is ideal for capturing CO₂ from • plants that use waste to generate energy (Mohammad et al., 2020).

PRE-COMBUSTION CO₂ CAPTURE

- Pre-combustion capture removes CO₂ before fuel combustion in industrial processes or facilities.
- Gasification reactions produce "syngas" stream that can be split into CO₂ and H_2 streams in the capture unit.

OXYFUEL CO₂ CAPTURE

- In oxyfuel combustion capture, the fuel is combusted in the presence of nearly pure oxygen (approximately 98%) to ensure complete combustion, which makes CO₂ capture easier.
- Separates nitrogen from combustion air

TECHNOLOGIES USED DURING CAPTURE

CCS technologies can capture over 90% of CO₂ emissions from industries – CO₂ that would otherwise have been released into the atmosphere.

ABSORPTION BY LIQUID SOLVENTS

ADSORPTION ONTO THE SURFACE OF SOLID SORBENTS

SEPARATION USING MEMBRANES THAT ACT LIKE SIEVES

CRYOGENIC SEPARATION

TRANSPORT

CO₂ transportation is regulated and closely managed under national and international laws and standards.

CO₂ is safely and securely transported in countries around the world every day.

MODES OF CO₂ TRANSPORT

COMPARISON OF CO₂ TRANSPORT MODES

PIPELINE

- » Most common mode of CO₂ transportation.
- » Can move large, commercial-scale quantities over long distances with lower operational cost.

SHIP

- » Offers flexibility in scale and destination.
- Is a good alternative for regions without close access to storage sites. >>
- » In some cases, can be a cheaper option than pipelines for transport over long distances.

TRUCK

» Best suited for transport of small quantities of CO₂ (2-30 tonnes per batch).

RAIL

» More advantageous over medium and long distances, using existing rail lines.

CURRENT CAPACITY MT = MILLION TONNE

GEOLOGIC STORAGE

Captured CO₂ is injected into carefully selected porous rock formations (**storage formations**).

These can be depleted oil and gas reservoirs, or porous rock filled with unusable, saline water – either onshore or offshore.

Storage formations are always underground, typically at depths 2-3 kilometers or more below the earth's surface.

* *	Oft/m	Drinking Water
	1000ft/304.8m	Aquifer
	2000ft/609.6m	
	3000ft/914.4m	
	4000ft/1219.2m	
	5000ft/1524m	Imperemeable
	6000ft/1828.8m	Seal
	7000ft/2133.6m	Injection
	8000ft/2438.4m	Zone

What Does CO₂ Look Like In a Rock?

- 2-dimensional image of a sandstone (common reservoir rock) with water and CO₂ in the pore space
- Wells are often drilled > 1 mile underground.
- Sandstones are sedimentary rocks where the pore structure is formed from the space between the mineral grains
- Oil and gas are produced in these pores, and are the same that ultimately store CO₂
- Courtesy of the Advanced Light Source at LBNL! Strand of hair is roughly 70 microns

TRAPPING MECHANISMS

Geologic storage mechanisms – how is CO₂ trapped?

Mineral Trapping

*Mineralization in Basalt occurs MUCH faster -95% of injected CO_2 mineralized in 2 years (CarbFix)

MEASUREMENT, MONITORING AND VERIFICATION (MMV)

- Once CO₂ is safely stored, MMV programs must validate the CO₂ plume is behaving as expected.
- Techniques used in monitoring are:
 - Seismic Monitoring: Using acoustic (sound) waves to image the subsurface and detect CO₂ plume movement.
 - Surface and Subsurface Monitoring: Installing sensors at various depths to monitor CO₂ levels, pressure, and other parameters.
 - **Soil Gas Monitoring:** Measuring CO₂ concentrations in the soil above the storage site.
 - Aerial and Satellite Monitoring: Using remote sensing technologies to monitor large areas for CO₂ emissions.
- A numerical model is needed to model CO₂ behaviour and should be updated based on new monitoring data.

SUB-SURFACE

DOWNHOLE FLUID CHEMISTRY DOWNHOLE PRESSURE DOWNHOLE TEMPERATURE GEOPHYSICS LOGS

SUB-SU

CROSS-HOLE EM CROSS-HOLE ERT CROSS-HOLE SEISMIC MICROSEISMIC VERTICAL SEISMIC PROFILING WELL GRAVIMETRY

BOOMER/SPARKER PROFILING BUBBLE STREAM DETECTION MULTI-ECHO SOUNDINGS SIDESCAN SONAR

OFFSHORE

SEABOTTOM GAS SAMPLING SEAWATER GEOCHEMISTRY SEABOTTOM SEISMIC SEABOTTOM EM

EM ELECTROMAGNETIC

C ERT ELECTRICAL RESISTANCE TOMOGRAPHY

POLICIES DRIVING GROWTH

Greater recognition of role of CCS in NDCs, National Roadmaps

Strengthening general climate policy

Strengthening fiscal incentives – capital and operating support

Establishment of national CCS targets

Creation of international CCS ambition: Carbon Management Challenge

Development of CCS regulations

POLICY SUPPORT

Government policy is a critical driver of CCS investment and deployment

Carbon pricing

Emissions Trading Schemes (ETS), carbon taxes

Subsidies

Tax credits/tax incentives, grants and direct investment, loans, offtake agreements, carbon contracts for difference (CCfDs)

Laws and regulations

Permitting regimes, domestic and international legal frameworks or agreements

REGULATORY SUPPORT

Law and regulations are essential for CCS

CCS-specific legislative and regulatory frameworks:

- Reduce risks and promote safety
- Provide certainty to investors
- Give communities long-term assurance
- Ensure environmental protection
- Enable transboundary developments

US EPA: CLASS VI REGULATIONS

- U.S. Environmental Protection Agency (EPA) is responsible for protecting public health by regulating and overseeing the nation's public drinking water supplies
- Safe Drinking Water Act (SDWA), administered by EPA, prohibits underground injection of fluids without a permit
- EPA regulates underground injections through the Underground Injection Control (UIC) program • Class VI regulations/wells specific for CO₂ injection into deep rock formations – designed to protect underground sources of drinking water (USDWs) by preventing the movement of contaminants out of injection formations and into USDWs
- Class VI regulates all aspects of the injection wells including:
 - Project siting
 - Injection operations, testing and monitoring
 - Financial responsibility

- Well construction requirements
- Emergency response and remedial plans
- Plugging and closure of wells and injection sites
- Ensuring compliance through permitting, site inspections, required reporting, and compliance reviews

Geologic Sequestration of CO₂ and the Safe Drinking Water Act

Environmental Protection

The Safe Drinking Water Act requires permits with protection and mitigation measures for the Geologic Sequestration of CO₂

UIC Class VI regulations are designed to protect underground sources of drinking water (USDWs) by preventing movement of CO₂ out of the injection formation

Protective aspects of UIC Class VI regulations include:

- Multiple safeguards to protect USDWs (described later in this presentation).
- Development of written plans for operating a GS project based on EPA ٠ technical guidance.
- Adaptable and evolving revisions made to plans if new data indicate the need.
- Tracking the movement of the "plume" of CO₂ and any other potential ٠ changes in the subsurface

Siting (Selecting Project Location)

Proper site characterization and selection focuses on the geologic setting of the injection well.

Goals: Protect USDWs by confirming that the site is suitable for GS – that it can hold the CO₂ and that CO₂ will not leak through geologic pathways.

How this is done:

Testing, data collection, and analysis to show the following:

- **Injection Zone**—can hold the injected CO₂. Thousands of feet deep.
- **Confining Layer**—prevents CO₂ from moving upward. ٠
- Faults—if present, test to verify they are inactive and ٠ will not allow movement of CO_2 .
- Seismic history—confirm seismic stability in the area. ٠
- **Compatibility**—verify that there will be no unanticipated reactions between the CO₂ and the ٠ existing chemical composition in injection zone.

United States **Environmental Protection**

Injection Well Construction

Class VI wells are constructed to protect USDWs.

Goals: Protect USDWs by preventing injected CO₂ or other naturally occurring fluids in deep formations from reaching USDWs. Isolate geologic formations from each other. Ensure the well will tolerate the subsurface conditions it will encounter.

How this is done:

- cement to ensure:
 - Injected CO₂ does not leak from injection wells.
- High-quality cementing is key to preventing fluid movement and protecting USDWs. ٠
- Well materials are corrosion-resistant. •
- Cement around the long metal tube ('long strong casing') must extend all the way from surface to the ٠
- After construction and before injection, wells are tested to:
 - Verify structural soundness.
 - Check cement quality.
 - Check for leaks in tubing and casing.

EPA United States Environmental Protection

To prevent fluids from entering USDWs, wells are constructed with multiple protective layers of casing and

Deep formation fluids do not move along the outside of the well casing and migrate upwards.

bottom of the well to isolate formations and prevent CO₂ movement between formations along the well.

Testing and Monitoring

Multiple types of testing and monitoring are done to support safe injection and storage of CO₂ during injection and through to site closure.

Goals: Track CO₂ injection, CO₂ movement, and pressure. Be alerted to leakage, problems with the injection well, or other unexpected changes in the subsurface.

How this is done:

- Pressure and CO₂ tracked in the injection formation.
- Groundwater quality monitored above the confining zone.
- Seismic surveys done to image the location and size of the CO₂ plume.
- Physical integrity of the well tested routinely.
- Testing for corrosion of the well required.
- Records retained for 10 years after site closure.

EPA United States Environmental Protection Agency

· Guided by plan approved by the UIC Director.

Post-Injection and Site Closure

Project sites must pose no danger to USDWs in order to be closed.

Goals: Demonstrate to the UIC Director that the project site will pose no danger to USDWs in the future. Close and restore the project site.

How this is done:

- After injection ceases, monitoring continues according to approved post-injection site care plan.
- Well is plugged according to approved well plugging plan:
 - Long-term prevention of CO₂ moving into USDWs.
 - Keeping formations isolated.
- To prepare to close the project site:
 - Demonstrate the plume and pressure in the injection formation are stable.
- Site closure—remove surface equipment and restore site to condition approved by UIC Director.

United States Environmental Protection

Adapted from: U.S. EPA, 2016. Geologic Sequestration of Carbon Dioxide Underground Injection Control (UIC) Program Class VI Well Plugging, Post-Injection Site Care, and Site Closure Guidance. https://www.epa.gov/uic/finalclass-vi-guidance-documents.

Carbon Management Challenge

Global carbon management initiative aligned with the Paris Agreement and high-level ministerial at COP, building on existing global collaborations (i.e. CEM CCUS, MI CDR), with a stakeholder mechanism launching soon.

Advancing projects by 2030 to manage

1 gigaton of CO₂ annually

Workstream 1

Developing **Country Project** Finance

Co-Leads Kenya Indonesia US

Workstream 2

Project **Deployment and** Tracking

Co-Leads Brazil

Workstream 3

Strategic Comms and Engagement

Co-Leads Saudi Arabia UK

CCS IN BRAZIL

Capture potential

Brazil has the potential to capture 190 million tons per year of CO₂ according to CCS Brasil

Storage potential

Several areas Brazil have favourable geological characteristics for CO₂ storage in saline formations and depleted oil and gas reservoirs

Economic benefit

The successful implementation of eight potential CCS hubs could contribute up to US\$3.2 billion per annum to Brazil's GDP and stimulate the creation of 210,000 new jobs, initially in construction, then in operational roles, according to S&P Global modelling

States of Brazil CO, Emissions with Capture Potential (Millions of Tons) 0.02 - 0.7

0,02	<i>o</i> ,,,
0,7 -	2,5
2,5 -	5,5
5,5 -	15,5

15.5 - 30

THANK YOU

COLLABORATING FOR A NET-ZERO FUTURE

www.globalccsinstitute.com/global-status-report/

