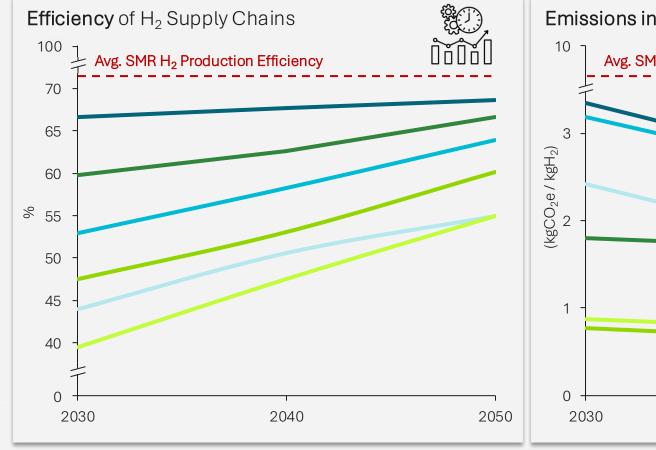
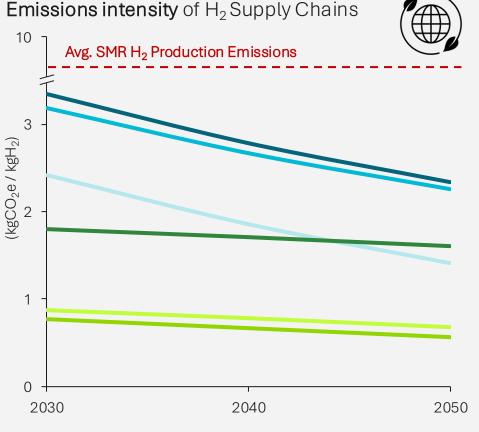


Key questions regarding intl. clean H₂ supply chains

- How will H₂ supply chain **efficiency** and **carbon intensity** evolve over time?
- 2. How will **LCOH** and **delivered cost** evolve over time?
- What are the key **bottlenecks** for international H₂ supply chains?


Objective: Model the efficiency, carbon intensity, and delivered cost of exporting clean H_2 in various forms from high potential geographies and importing it in geographies with high demand potential from now until 2050.



H₂ Supply Chains will improve in both efficiency and emissions intensity over time, increasing their attractiveness as decarbonization vectors

Key takeaways: Over time, the largest drivers of efficiency improvements are expected in electrolysis, ammonia cracking, and liquefaction; efficiency improvements also lead to reduced emissions intensity and delivery costs. Blue H₂ supply chain emissions intensity is expected to decrease along with upstream emissions from natural gas flaring and leakage, however both blue and green H₂ supply chain emissions intensities would be 2-3x higher than depicted if local grid emissions intensities were used instead of green PPAs.

- Blue H2 Liquified
- Blue H2 as NH3 reconverted
- Blue H2 by Pipeline
- Green H2 Liquefied
- Green H2 as NH3 reconverted
- Green H2 by Pipeline

Assumptions:

Shipping route: Middle East to Europe Pipeline route: North Africa to Europe

Blue H_2 produced via ATR + CCS, with responsibly sourced gas at an upstream emissions rate of 1% in 2030, decreasing to 0.1% in 2050.

It is assumed that PPAs are used for each part of the supply from production, compression, storage, reconversion, and liquefaction. Fully decarbonised shipping not assumed.

2. Delivered cost of H₂ to Europe - 2030

By 2030, the cheapest H₂ imports are expected to come from North Africa and the Middle East, driven by low-cost solar resource and shorter transport distances compared to US Gulf Coast and Australia.

Shipped green H₂ imports are not likely to be competitive with domestic production by 2030, but industrials may opt to be first movers and sign long term offtake contracts or benefit from policy mechanisms such as H₂ Global and upcoming AggregateEU program.

High boil off during transport makes liquid H_2 production costs higher especially over long distances. Liquefaction and ammonia cracking are key levers to reducing delivered cost.

In 2030, green and blue H_2 by pipeline as well as blue ammonia reconverted into H_2 is competitive with domestic production

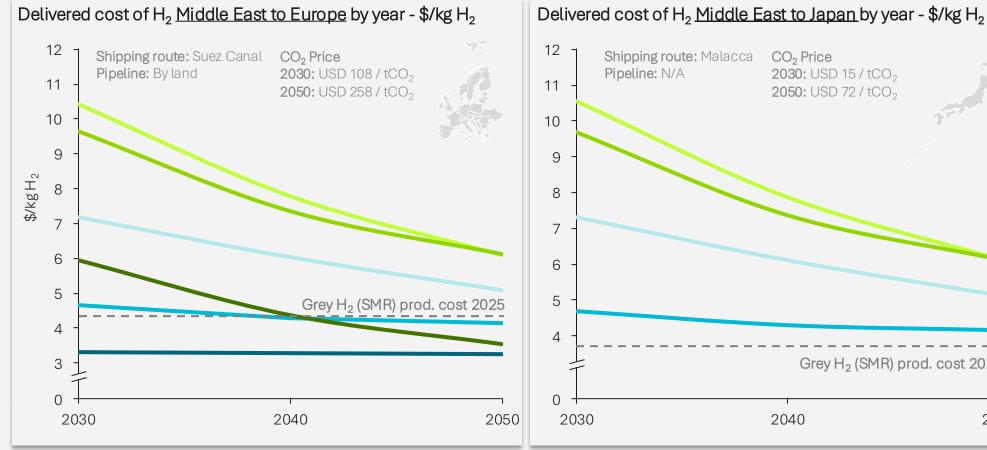
Energy prices and capacity factors vary by region. Oversizing dimensions are the same for liquified green H_2 , and green ammonia at 2:1 RES to electrolysis. Cost estimates without subsidy. Electrolyser costs based on a weighted average of PEM and Alkaline electrolysis. Liquefaction of H_2 is included in the Conversion and Transport bar, re-conversion incudes regassification and ammonia cracking.

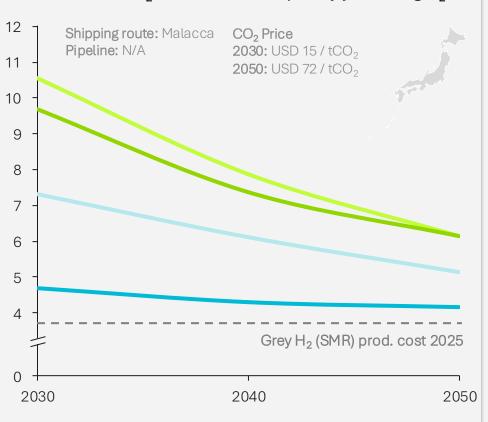
2. Delivered cost of H₂ to Japan - 2030

Green and blue ammonia reconverted into H_2 costs less than domestically produced clean H_2 in Japan, which could catalyze investment into key technological bottlenecks along the supply chain such as ammonia cracking, and the demand side such as ammonia co-fired power, green steel production, transport and more.

Japan also has a robust incentive framework for driving investment into clean H_2 and ammonia value chains. METI has allocated ~\$51 billion for H_2 infrastructure, with ~\$19 billion going to CfDs for H_2 and ammonia imports currently underway.¹

In 2030, blue and green H_2 imports are both competitive with domestic production pathways especially as ammonia


Energy prices and capacity factors vary by region. Oversizing dimensions are the same for liquified green H₂, and green ammonia at 2:1 RES to electrolysis. Cost estimates without subsidy. Electrolyser costs based on a weighted average of PEM and Alkaline electrolysis. Liquefaction of H₂ is included in the Conversion and Transport bar, re-conversion incudes regassification and ammonia cracking.


¹The view from Japan: 2025 shaping as a pivotal year for ammonia energy.

Guidehouse analysis 2025 5 The view from Japan: 2025 shaping as a pivotat year for ammonia energy 5

Although some clean H₂ supply chains may become competitive with local grey H₂ production, markets will need to adapt to price discovery

Key takeaways: Large cost reductions are expected for green H₂-based value chains due to marked improvements in electrolyser CAPEX (from ~\$1,150 in 2030) to ~\$750 \$/kW H₂ in 2050) and efficiency (from 72% in 2030 to 80% in 2050). As a result, reductions in OPEX and balancing costs (batteries and on-site H₂ storage) will occur, implying a need to implement flexible H₂ contracting reflecting economies of scale. However, the premium for green H₂ is not expected to disappear even by 2050, suggesting support schemes will remain crucial and/or lead markets for decarbonized product will need to absorb these costs.

- Blue H2 liquefied
- Blue H2 as NH3 reconverted
- Blue H2 by Pipeline (EU only)
- Green H2 Liquefied
- Green H2 as NH3 reconverted
- Green H2 by Pipeline (EU only).

Assumptions:

Shipping route: Middle East to Europe Pipeline route: North Africa to Europe

Blue H₂ produced via ATR + CCS, with responsibly sourced gas at an upstream emissions rate of 1% in 2030, decreasing to 0.1% in 2050.

It is assumed that PPAs are used for each part of the supply from production, compression, storage, reconversion, and liquefaction. Fully decarbonised shipping not assumed.

BOTTLENECKS FOR H2 SUPPLY CHAINS MAY 2, 2025

Bottlenecks for clean H₂ supply chains

Debottlenecking across technology, market, and policy are required simultaneously

01

Clean H₂ demand incentives are insufficient

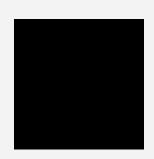
Hard-to-abate industries such as refining, steel production, and transport will require clean H₂ to meet decarb targets, however they are not adequately incentivized.

02

Creative contracting is needed

Contracting of H_2 itself can be a driver for demand. Hybrid contracts with fixed base prices and adjustments indexed to fluctuations in subsidies, commodity prices, and feedstock costs are needed.

03

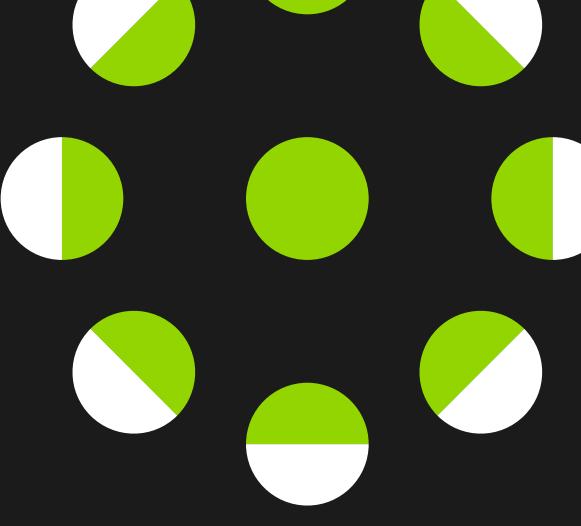

Political will and instrumentation is inadequate

Penalty regimes in compliance markets are showing preliminary success in markets such as maritime fuel and will be crucial for market development.

04

Much hinges on technological innovation

Cost reductions will not occur without development, and will require smart spreading as well as appetite for risk.



outwit complexity™